Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.083
Filtrar
1.
Chemosphere ; 355: 141779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537709

RESUMO

To ensure good air quality during the China International Import Expo (CIIE) event, stringent emission-reduction measures were implemented in Shanghai. To assess the efficacy of these measures, this study measured typical categories of intermediate/semi volatile organic compounds (I/SVOCs), including alkanes (C10-C26 n-alkanes and pristane), EPA-priority polycyclic aromatic hydrocarbons (PAHs), alkylnaphthalenes, benzothiazole (BTH) and chlorobenzenes (CBs), at an urban site of Shanghai before and during two CIIE events (2019 and 2020; non-CIIE versus CIIE). The average concentrations of alkanes and PAHs during both 2019 and 2020 CIIE events decreased by approximately 41% and 17%, respectively, compared to non-CIIE periods. However, the decline in BTH and CBs was only observed during CIIE-2019. Secondary organic aerosol (SOA) formation from alkanes, PAHs and BTH was evaluated under atmospheric conditions, revealing considerable SOA contributions from dimethylnaphthalenes and BTH. Positive matrix factorization (PMF) analysis further revealed that life-related sources, such as cooking and residential emissions, make a noticeable contribution (21.6%) in addition to the commonly concerned gasoline-vehicle sources (31.5%), diesel-related emissions (20.8%), industrial emissions (18.6%) and ship emissions (7.5%). These findings provide valuable insights into the efficacy of the implemented measures in reducing atmospheric I/SVOCs levels. Moreover, our results highlight the significance of exploring additional individual species of I/SVOCs and life-related sources for further research and policy development.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , Alcanos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Aerossóis/análise , Emissões de Veículos/análise , Material Particulado/análise
2.
Mar Pollut Bull ; 201: 116224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457880

RESUMO

In this study, multiple molecular markers [polycyclic aromatic hydrocarbons (PAHs), linear and branched alkanes, unresolved complex mixture (UCM), hopanes, and steranes] were applied to explore petroleum-related inputs in complex coastal systems influenced by various human-induced pressures. To investigate anthropogenic impacts related to petrogenic emissions, we analysed surface sediments from coastal areas of southern Baltic, including harbour/shipyard channels, offshore dumping sites, shipping routes, and major sinks for particulate matter discharged by large rivers. This study indicates a large spatial variability in the contamination degree of examined sites by petroleum-derived chemicals. Hopanes and steranes along with UCM appeared to have the highest potential to identify petroleum sources in studied locations, whereas investigations based on alkanes and PAHs seemed to be considerably affected by inputs of modern biogenic and combustion-derived materials, respectively. However, the combined use of all these markers provides deeper insight into the complexity of sedimentary organic matter in human-impacted environments.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Efeitos Antropogênicos , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Monitoramento Ambiental , Alcanos/análise , Petróleo/análise , Biomarcadores , Hidrocarbonetos Policíclicos Aromáticos/análise , Triterpenos Pentacíclicos
3.
Chemosphere ; 352: 141400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340993

RESUMO

The analysis of chlorinated paraffins (CPs) has become a major analytical challenge. GC-ECNI-HRMS coupling is often used to analyse and quantify them. However, the influence of certain GC and ECNI parameters on the responses of polychlorinated n-alkanes (PCAs), the dominant components of CPs, has hardly been studied. In this paper, we investigated not only the influence of GC column characteristics, but also oven, GC inlet and source temperatures for simultaneous analysis of PCAs with chain-length ranging from 10 up to 20 carbon atoms (PCAs-C10-20). Particular attention was paid to the absolute response and PCA homologue group pattern obtained for a CP technical mixture. The optimum conditions for a wide homologue group determination were GC inlet, final gradient and ion source temperatures set at 220-240 °C, 340 °C and 200 °C. At the same time, a higher response was obtained with the Optima 5HT column compared to Optima 1 column, and with a length and film thickness of 12.5 m and 0.25 µm, respectively. The homologue group pattern of the technical mixture studied was significantly modified as a function of the source and GC inlet temperatures, film thickness and composition of the stationary phase. Here we recommend conditions that will improve the overall PCA pattern, in order to better characterise their occurrence in future environmental monitoring and exposure assessment.


Assuntos
Hidrocarbonetos Clorados , Parafina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Parafina/análise , Hidrocarbonetos Clorados/análise , Espectrometria de Massas , Monitoramento Ambiental/métodos , Alcanos/análise
4.
Chemosphere ; 352: 141401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346520

RESUMO

The analysis of chlorinated paraffins (CPs) is today an analytical challenge. Indeed, it is still impractical to describe their real composition in terms of polychlorinated alkanes (PCAs) homologue groups, which dominate technical mixtures. The co-elution of PCA congeners generates interferences due to the competition phenomena which occur during the ionisation process as well as to the dependence of the ionisation sources on the PCA chemistry. Therefore, the aim of this study was to investigate the influence of chromatographic separation, by LC-ESI-HRMS coupling, on the PCA homologue group pattern and, eventually, on their determination in food samples from interlaboratory studies. For this, three different mobile phases and six LC chromatographic columns were studied in order to optimise the analysis of CP mixtures. The first results showed that the use of a MeOH/H2O mobile phase reveals more appropriately the higher chlorinated PCAs. However, using ACN/H2O led to less ion species, with almost exclusively [M + Cl]- adducts, formed using post-column dichloromethane addition. Regarding the choice of the stationary phases, Hypercarb column provided a completely different homologue group pattern from the other chromatographic columns, in relation with the stronger retention of PCAs. Among the other columns, the C30 column better highlighted the short-chain PCAs compared to the C18 column conventionally used. Because the regulations now concern short-chain CPs, the quantification of food samples was then carried out on the C30 column. The optimised LC-ESI-HRMS conditions using C30 column and MeOH/H2O solvent mixture led to a quantification of PCAs in samples from interlaboratory studies with satisfactory accuracy (|Z-score| ≤ 2) and precision (<15%).


Assuntos
Hidrocarbonetos Clorados , Parafina , Parafina/análise , Hidrocarbonetos Clorados/análise , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Cloreto de Metileno , Alcanos/análise
5.
Environ Sci Pollut Res Int ; 31(15): 22431-22440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407710

RESUMO

Sediment source fingerprinting using biomarker properties has led to new insights in our understanding of land use contributions to time-integrated suspended sediment samples at catchment scale. A time-integrated mass-flux sampler (TIMS; also known as the 'Phillips' sampler), a cost-effective approach for suspended sediment collection in situ. Such samplers are widely being used to collect sediment samples for source fingerprinting purposes, including studies using biomarkers as opposed to more conventional tracer properties. Here, we assessed the performance of TIMS for collecting representative sediment samples for biomarkers during high discharge events in a small lowland grassland-dominated catchment. Concentrations of long odd-chain n-alkanes (> C23) and both saturated free and bound fatty acids (C14-C32), as well as compound-specific 13C were compared between sediment collected by both TIMS and autosamplers (ISCO). The results showed that concentrations of alkanes, free fatty acids, and bound fatty acids are consistently comparable between TIMS and ISCO suspended sediment samples. Similarly, compound-specific 13C signals were not found to be significantly different in the suspended sediment samples collected using the different samplers. However, different magnitudes of resemblance in biomarker concentrations and compositions between the samples collected using the two sediment collection methods were confirmed by overlapping index and symmetric coordinates-based correlation analysis. Here, the difference is attributed to the contrasting temporal basis of TIMS (time-integrated) vs. ISCO (discrete) samples, as well as potential differences in the particle sizes collected by these different sediment sampling methods. Nevertheless, our findings suggest that TIMS can be used to generate representative biomarker data for suspended sediment samples collected during high discharge events.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Ácidos Graxos , Biomarcadores , Alcanos/análise
6.
Environ Geochem Health ; 46(1): 22, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169010

RESUMO

The levels, spatial distribution, and sources of petroleum hydrocarbons and phthalates were assessed in surface sediment samples from the urban lagoon of Obhur near Jeddah, the largest city on the Red Sea coast of Saudi Arabia. The lagoon was divided into the inner zone, middle zone, and outer zone based on its geomorphological features and developmental activities. n-Alkanes, hopane and sterane biomarkers, and unresolved complex mixture were the major petroleum hydrocarbon compounds of the total extractable organic matter. Phthalates were also measured in the sediment samples. In the three zones, n-alkanes ranged from 89.3 ± 88.5 to 103.2 ± 114.9 ng/g, whereas the hopane and sterane biomarkers varied from 69.4 ± 75.3 to 77.7 ± 69.9 ng/g and 72.5 ± 77.9-89.5 ± 82.2 ng/g, respectively. The UCM concentrations ranged from 821 ± 1119 to 1297 ± 1684 ng/g and phthalates from 37.4 ± 34.5 65 ± 68 ng/g. The primary origins of these anthropogenic hydrocarbons in the lagoon sediments were petroleum products (boat engine discharges, boat washing, lubricants, and wastewater flows) and plasticizers (plastic waste and litter). The proportions of anthropogenic hydrocarbons derived from petroleum products in the sediment's TEOM ranged from 43 ± 33 to 62 ± 15%, while the percentages for plasticizers varied from 2.9 ± 1.2 to 4.0 ± 1.6%. The presence and inputs of these contaminants from petroleum and plastic wastes in the lagoon's sediments will eventually have an impact on its habitats, including the benthic nursery and spawning areas.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/análise , Oceano Índico , Arábia Saudita , Plastificantes , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Hidrocarbonetos/análise , Alcanos/análise , Biomarcadores , Triterpenos Pentacíclicos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise
7.
Environ Sci Pollut Res Int ; 31(6): 9713-9731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194174

RESUMO

Indoor pollution and deposition dust (DD), in particular, are acquiring concern, due to long exposure time and importance of intake by humans through contact and ingestion. Hospitals look a special category of sites, owing to peculiar contaminants affecting them and to presence of people prone to adverse effects induced by toxicants. Four in-field campaigns aimed at understanding the chemical composition of DD were performed in five Italian hospitals. Measurements were performed before (autumn 2019), during (spring 2021), and after (winter 2022) the peak of SARS-CoV2 and when restrictions caused by pandemic were revoked (winter 2023). Parallel measurements were made outdoors (2022), as well as in a university and a dwelling. Targeted contaminants were n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while iso- and anteiso-alkanes were analyzed to assess the impact of tobacco smoking. Total n-alkanes ranged from 3.9 ± 2.3 to 20.5 ± 4.2 mg/g, with higher percentages of short chain homologs in 2019. PAHs ranged from 0.24 ± 0.22 to 0.83 ± 0.50 mg/g, with light congeners (≤ 228 a.m.u.) always exceeding the heavy ones (≥ 252 a.m.u.). According to carbon preference indexes, alkanes originated overall from anthropogenic sources. Microorganisms resulted to affect a hospital, and tobacco smoke accounted for ~ 4-20‰ of DD mass. As for PAH sources, the diagnostic concentration ratios suggested the concourse of biological matter burning and vehicle emission. Benzo[a]pyrene equivalent carcinogenic and mutagenic potencies of depositions at hospitals ranged ~ 9-39 µg/g and ~ 15-76 µg/g, respectively, which seems of concern for health. DD composition in hospitals was different from that outside the premises, as well as that found at university and at dwelling.


Assuntos
COVID-19 , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Monitoramento Ambiental/métodos , RNA Viral , Pandemias , SARS-CoV-2 , Substâncias Perigosas , Poeira
8.
Sci Total Environ ; 912: 169216, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092198

RESUMO

Nonpolar organic compounds (NPOCs) are found in atmospheric aerosols and have significant implications for environmental and human health. Although many studies have quantitatively estimated the sources of NPOCs in different cities, few have evaluated their main influencing factors (e.g., emissions and meteorological conditions) at relatively long (e.g., different seasons) and short timescales (e.g., several days during pollution episodes). A better understanding of this issue could optimise strategies for dealing with organic contamination in atmospheric particulate matter. NPOCs (including n-alkanes, PAHs and hopanes) in fine particulate matter (PM2.5) were sampled daily at Nanchang, China, from 1 November 2020 to 31 October 2021. Analyses of specific biomarkers and diagnostic ratios indicate that the NPOCs mainly had anthropogenic sources. The quantitative estimates of a positive matrix factorization model show that fossil fuel and biomass combustion were the main sources of n-alkanes (contributing 64.8 %), while vehicle exhaust was the main source of PAHs (47.0 %) and hopanes (52.3 %). Seasonally, the contributions from coal and/or biomass combustion were higher in autumn and winter (40.2-56.3 %) than in spring and summer (25.7-44.3 %), while contributions from natural plants, petroleum volatilization and vehicle exhaust were higher in spring and summer (14.7-63.5 %) than in autumn and winter (8.1-48.9 %). Redundancy analysis shows that increased emissions, especially from coal and/or biomass combustion, are the main cause of increases in NPOCs, during both annual sampling periods and winter pollution episodes. Over the year, higher temperature and longer sunshine hours correspond to lower NPOC concentrations. In winter pollution episodes, increases in temperature and relative humidity correspond to increases in NPOC concentrations. Our results suggest that controlling primary emissions, especially from coal and biomass combustion, may be an effective way to prevent increases in NPOC concentrations.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Estações do Ano , Monitoramento Ambiental , Material Particulado/análise , China , Emissões de Veículos/análise , Compostos Orgânicos/análise , Carvão Mineral/análise , Aerossóis/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Triterpenos Pentacíclicos/análise , Alcanos/análise
9.
Environ Pollut ; 343: 123239, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154782

RESUMO

A total of 84 PM2.5 (fine particulate matter) aerosol samples were collected between October 2020 and August 2021 within an urban site in Hangzhou, an East China megacity. Chemical species, such as organic carbon (OC), elemental carbon (EC), as well as char, soot, and n-alkanes, were analyzed to determine their pollution characteristics and source contributions. The mean yearly concentrations of OC, EC, char, soot, and total n-alkanes (∑n-alkane) were 8.76 ± 3.61 µg/m3, 1.44 ± 0.76 µg/m3, 1.21 ± 0.69 µg/m3, 0.3 ± 0.1 µg/m3, and 24.2 ± 10.6 ng/m3. The OC, EC, and ∑n-alkanes were found in the highest levels during winter and lowest during summer. There were strong correlations between OC and EC in both winter and spring, suggesting similar potential sources for these carbonaceous components in both seasons. There were poor correlations among the target pollutants due to summertime secondary organic carbon formation. Potential source contribution functions analysis showed that local pollution levels in winter and autumn were likely influenced by long-range transportation from the Plain of North China. Source index and positive matrix factorization models provided insights into the complex sources of n-alkanes in Hangzhou. Their major contributors were identified as terrestrial plant releases (32.7%), traffic emissions (28.8%), coal combustion (27.3%), and microbial activity (11.2%). Thus, controlling vehicular emissions and coal burning could be key measures to alleviate n-alkane concentrations in the atmosphere of Hangzhou, as well as other Chinese urban centers.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Fuligem/análise , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análise , China , Carvão Mineral/análise , Alcanos/análise , Aerossóis/análise , Carbono/análise , Estações do Ano
10.
J Sci Food Agric ; 104(1): 93-103, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37532681

RESUMO

BACKGROUND: Volatile organic compounds (VOCs) produced during meat storage are mainly derived from the decomposition of meat components and the metabolism of spoilage bacteria. VOCs produced in sterile bacon model substrate inoculated or un-inoculated with spoilage bacteria, Staphylococcus xylosus (P2), Leuconostoc mesenteroides (P6), Carnobacterium maltaromaticum (P9), Leuconostoc gelidum (P16) and Serratia liquefaciens (P20), previously isolated, were identified by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Furthermore, combinations of the strains (Pm) were also obtained. RESULTS: In total, 54 volatile compounds, including aldehydes, alcohols, phenols, ketones, alkanes, alkanes, organic acids, esters and so forth, were determined after 45 days of storage in bacon inoculated with potential spoilage bacteria using the HS-SPME/GC-MS method. VOC concentrations of alcohols and organic acids in groups inoculated with bacteria were remarkably higher (P < 0.05) compared to that in control samples. Specifically, some VOCs are closely related to the metabolic activity of the inoculated bacterial strains; for example, 2,3-butanediol was associated with P2, P16 and P20, and acetic acid was mainly related to P6 and P9. CONCLUSION: The results of partial least squares regression indicated that there was a high correlation between the electronic nose sensors and VOCs of smoked inoculated potential spoilage bacteria. These compounds are potentially important for predicting deterioration of smoked bacon. © 2023 Society of Chemical Industry.


Assuntos
Carne de Porco , Compostos Orgânicos Voláteis , Carne de Porco/análise , Fumaça , Microbiologia de Alimentos , Bactérias , Compostos Orgânicos Voláteis/metabolismo , Alcanos/análise , Microextração em Fase Sólida
11.
Sci Rep ; 13(1): 18871, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914771

RESUMO

This work examined the polycyclic aromatic hydrocarbons (PAHs) and n-alkanes quantities, sources, and hazards in sediments collected from the Egyptian Western Desert Oases namely: Dakhla, Kharga and Farafra oases. The n-alkane (C9-C20) residue concentrations have ranged from 0.66 to 2417.91 µg/g recorded for the three Oases. On the other hand, the total n-alkane ranged from 448.54 µg/g to 8442.60 µg/g. Higher carbon preference index (CPI) values (> 1.0) proposed that the natural sources could be the main contributor to n-alkanes in the Oases sediment. GC-MS/MS (selected reaction monitoring (SRM) method) was used for the determination of the ΣPAHs concentrations in the studied sediments. The ΣPAHs concentrations (ng/g, dry weight) in the studied three Oases varied from 10.18 to 790.14, 10.55 to 667.72, and from 38.27 to 362.77 for the Kharga, Dakhla and Farafra Oases, respectively. The higher molecular weight PAHs were the most abundant compounds in the collected samples. Assessing potential ecological and human health issues highlighted serious dangers for living things and people. All the investigated PAHs had cancer risk values between 1.43 × 10-4 and 1.64 × 10-1, this finding suggests that PAHs in the samples under study pose a moderate risk of cancer. The main sources of PAHs in this study are biomass, natural gas, and gasoline/diesel burning emissions.


Assuntos
Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Egito , Espectrometria de Massas em Tandem , Hidrocarbonetos , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Medição de Risco , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , China
12.
Ecotoxicol Environ Saf ; 268: 115695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976932

RESUMO

Widespread use of spray-type consumer products can raise significant concerns regarding their effects on indoor air quality and human health. In this study, we conducted non-target screening using gas chromatography-mass spectrometry (GC-MS) to analyze VOCs in 48 different spray-type consumer products. Using this approach, we tentatively identified a total of 254 VOCs from the spray-type products. Notably, more VOCs were detected in propellant-type products which are mostly solvent-based than in trigger-type ones which are mostly water-based. The VOCs identified encompass various chemical classes including alkanes, cycloalkanes, monoterpenoids, carboxylic acid derivatives, and carbonyl compounds, some of which arouse concerns due to their potential health effects. Alkanes and cycloalkanes are frequently detected in propellant-type products, whereas perfumed monoterpenoids are ubiquitous across all product categories. Among the identified VOCs, 12 compounds were classified into high-risk groups according to detection frequency and signal-to-noise (S/N) ratio, and their concentrations were confirmed using reference standards. Among the identified VOCs, D-limonene was the most frequently detected compound (freq. 21/48), with the highest concentration of 1.80 mg/g. The risk assessment was performed to evaluate the potential health risks associated with exposure to these VOCs. The non-carcinogenic and carcinogenic risks associated with the assessed VOC compounds were relatively low. However, it is important not to overlook the risk faced by occupational exposure to these VOCs, and the risk from simultaneous exposure to various VOCs contained in the products. This study serves as a valuable resource for the identification of unknown compounds in the consumer products, facilitating the evaluation of potential health risks to consumers.


Assuntos
Poluentes Atmosféricos , Cicloparafinas , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/toxicidade , Compostos Orgânicos Voláteis/análise , Cicloparafinas/análise , Alcanos/análise , Monoterpenos/análise , Monitoramento Ambiental/métodos
13.
J Air Waste Manag Assoc ; 73(12): 951-968, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850745

RESUMO

Carlsbad Caverns National Park (CAVE) is located in southeastern New Mexico and is adjacent to the Permian Basin, one of the most productive oil and natural gas (O&G) production regions in the United States. Since 2018, ozone (O3) at CAVE has frequently exceeded the 70 ppbv 8-hour National Ambient Air Quality Standard. We examine the influence of regional emissions on O3 formation using observations of O3, nitrogen oxides (NOx = NO + NO2), a suite of volatile organic compounds (VOCs), peroxyacetyl nitrate (PAN), and peroxypropionyl nitrate (PPN). Elevated O3 and its precursors are observed when the wind is from the southeast, the direction of the Permian Basin. We identify 13 days during the July 25 to September 5, 2019 study period when the maximum daily 8-hour average (MDA8) O3 exceeded 65 ppbv; MDA8 O3 exceeded 70 ppbv on 5 of these days. The results of a positive matrix factorization (PMF) analysis are used to identify and attribute source contributions of VOCs and NOx. On days when the winds are from the southeast, there are larger contributions from factors associated with primary O&G emissions; and, on high O3 days, there is more contribution from factors associated with secondary photochemical processing of O&G emissions. The observed ratio of VOCs to NOx is consistently high throughout the study period, consistent with NOx-limited O3 production. Finally, all high O3 days coincide with elevated acyl peroxy nitrate abundances with PPN to PAN ratios > 0.15 ppbv ppbv-1 indicating that anthropogenic VOC precursors, and often alkanes specifically, dominate the photochemistry.Implications: The results above strongly indicate NOx-sensitive photochemistry at Carlsbad Caverns National Park indicating that reductions in NOx emissions should drive reductions in O3. However, the NOx-sensitivity is largely driven by emissions of NOx into a VOC-rich environment, and a high PPN:PAN ratio and its relationship to O3 indicate substantial influence from alkanes in the regional photochemistry. Thus, simultaneous reductions in emissions of NOx and non-methane VOCs from the oil and gas sector should be considered for reducing O3 at Carlsbad Caverns National Park. Reductions in non-methane VOCs will have the added benefit of reducing formation of other secondary pollutants and air toxics.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Nitratos/análise , Compostos Orgânicos Voláteis/análise , New Mexico , Cavernas , Parques Recreativos , Alcanos/análise , Monitoramento Ambiental/métodos , China
14.
Mar Pollut Bull ; 196: 115576, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813061

RESUMO

The distribution of saturated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) was assessed in superficial sediment samples collected from Mandapam island groups, Gulf of Mannar, India. The hydrocarbon distribution pattern and the n-alkane indices (e.g., carbon preference index (CPI) and natural n-alkanes ratio (NAR)) were deployed to differentiate between the biogenic and anthropogenic sources. Petroleum pollution was indicated by the pristane/phytane ratio close to 1. Presence of a prominent unresolved complex mixture (UCM) as well as hopane concentrations further supported this assertion. The evaluation of petrogenic sources of contamination were also comprehended by various diagnostic ratios of PAHs. The sites associated with shipping activities, tourism, and located near the mainland and accessible portions of the islands exhibited high petroleum contamination. Correlation analysis underlines the significance of combining petroleum-specific marker compounds and diagnostic ratios to improve the assessment of human influence on marine ecosystems.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Petróleo/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/análise , Hidrocarbonetos/análise , Alcanos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
15.
Environ Sci Pollut Res Int ; 30(47): 103910-103920, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37691060

RESUMO

The abundance and composition of aliphatic hydrocarbon biomarkers were determined in dated sediment cores from Lakes Qijiapao (QJP) and Huoshaoheipao (HSH) in the Songnen Plain, Northeast China, to investigate historical environmental changes in these lakes and identify likely controlling factors. Based on these results, the recent environmental history of the two lakes can be divided into three periods. Before 1950, low Paq values (avg. 0.23 and 0.27, respectively) and middle-chain n-alkane abundances (normalized to total organic carbon, avg. 14.82 and 16.01 µg g-1 TOC, respectively) in both lakes suggested low aquatic productivity and the limited input of submerged macrophyte organic matter (OM). However, the significant increase in the abundance of short-chain n-alkanes in Lake HSH (from 8.34 to 16.68 µg g-1 TOC) indicated the emergence of early nutrient enrichment in the lake. From 1950 to 2000, marked increase in the abundance of middle-chain n-alkanes (avg. 21.72 and 22.62 µg g-1 TOC in Lakes QJP and HSH, respectively) and Paq values indicated that both lakes had undergone eutrophication because of the population explosion and agricultural intensification. From 2000 to 2013, the abundance of short- and middle-chain n-alkanes in Lake QJP markedly exceeded those in Lake HSH and indicated a larger eutrophication in Lake QJP, which could be caused by the development of ecotourism in Lake HSH and the concomitant increase in aquaculture in Lake QJP in recent years. The highest abundance of C30 αß-hopane (~ 10.24 µg g-1 TOC) and the lowest CPIH values in Lake QJP revealed a possible petroleum pollution since 2008. Taken together, lake eutrophication in the Songnen Plain accelerated after 1950 and was influenced primarily by agriculture and aquaculture. This is in contrast to lakes in other regions of China (such as the Yangtze River Basin and Yunnan Province), where urbanization and industrialization have exerted a dominant influence on the lake environment.


Assuntos
Sedimentos Geológicos , Hidrocarbonetos , Humanos , China , Sedimentos Geológicos/química , Hidrocarbonetos/análise , Alcanos/análise , Eutrofização , Monitoramento Ambiental/métodos
16.
Chemosphere ; 344: 140227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758093

RESUMO

Coastal ecosystems are facing increasing anthropogenic stressors, including rapid urbanization rates and extensive fossil fuel usage. Nevertheless, the distribution of hydrocarbons in the Brazilian semi-arid region remains relatively uncharacterized. In this study, we analyzed ten surface sediment samples (0-2 cm) along the banks of the Acaraú River to assess the chronic contributions of aliphatic and aromatic hydrocarbons. The Acaraú River is a crucial riverine-estuarine area in the semi-arid region of Northeast Brazil. Ultrasound-assisted extraction and gas chromatograph coupled to a mass spectrometer were used to identify target compounds: 45 PAHs, 27 n-alkanes (C10-C38), and two isoprenoids. At most stations, the predominant grain size was sand, and the organic carbon content was less than 1%. The total n-alkanes concentration ranged from 14.1 to 170.0 µg g-1, while individual pristane and phytane concentrations ranged from not detected (nd) to 0.4 µg g-1 and nd to 0.7 µg g-1, respectively. These concentrations resemble those found in unpolluted sediments and are lower compared to samples from urbanized coastal areas. The total USEPA PAHs concentration varied from 157.8 to 1364 ng g-1, leading to the characterization of sediment samples as moderately polluted. Based on diagnostic ratios calculated from both alkane and PAH concentrations, the sediment samples were predominantly deriving from pyrolytic sources, with some contribution from petrogenic sources. The most abundant group was 5-ring PAHs (mean: 47.3 ± 36.7%), followed by 3-ring PAHs (mean: 17.9 ± 13.7%). This predominance indicates a pyrolytic origin of hydrocarbons in the Acaraú River. The concentrations reported here were representative of the level of background hydrocarbons in the region. Regarding the sediment quality assessment, BaP TPE calculated for the Acaraú River ranged from 13.2 to 1258.4 ng g-1 (mean: 409.3 ± 409.4 ng g-1). When considering site-specific sediment quality values for the coast of the state of Ceará, half of the stations are classified as strongly contaminated, and toxic effects are expected to occur (SQGq >0.25) for the ∑16 PAHs measured in the samples, especially due to dibenz [a,h]anthracene concentrations.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Brasil , Rios/química , Ecossistema , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Hidrocarbonetos , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Monitoramento Ambiental , Atividades Humanas
17.
Sci Total Environ ; 897: 165424, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429466

RESUMO

In Secovlje Salina Nature Park, the therapeutic mud matured in the natural sedimentary environmental site. This work aimed to determine the influence of the peloid maturation process on the hydrocarbon and elemental distributions, as well as changes in morphology. For this purpose, the sample before and after maturation was examined using various methods. n-Alkanes were the most abundant among saturated hydrocarbons in both immature and mature peloid samples. The results showed that the maturation mainly influenced the change in distribution and concentration (from 378 to 1958 ppm) of n-alkanes. The organic matter (OM) of the immature peloid sample was characterized by a slight prevalence of long-chain and odd carbon-numbered n-alkanes, maximizing at n-C27. However, mature peloid's OM showed a similar share of short-, mid- and long-chain n-alkanes with a slight dominance of short-chain members, maximizing at n-C16. The origin of short-chain and even carbon-numbered n-alkanes was attributed to microbial precursors (e.g., Leptolyngbyaceae). Hopanes were considerably more dominant compared to steranes in both peloids. The hopane series of immature peloid was characterized by the dominance of 22,29,30-trinor-hop-5(6)-ene (C27 hopene), as well as the presence of C30-hop-22(29)-ene (diploptene), which are widespread in cyanobacterial species. The aromatic fraction of immature peloid pointed to the predominance of polycyclic aromatic hydrocarbons (PAHs). As peloid aging progressed, the sample was richer in methyl-branched alkanes, carboxylic acids, their methyl esters, and thermodynamically more stable hopanes and steranes. The presence of elements with toxicological relevance during maturation was reduced below the limits prescribed in most of the directives for cosmetic products. It specifically refers to: As, Ni and Se. A higher concentration of total sulfur in the mature peloid can be related to gypsum precipitation in the summer and/or more intensive microbial activity.


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Eslovênia , Hidrocarbonetos/análise , Alcanos/análise , Triterpenos Pentacíclicos , Carbono/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
18.
Elife ; 122023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431891

RESUMO

Attracting and securing potential mating partners is of fundamental importance for reproduction. Therefore, signaling sexual attractiveness is expected to be tightly coordinated in communication systems synchronizing senders and receivers. Chemical signaling has permeated through all taxa of life as the earliest and most widespread form of communication and is particularly prevalent in insects. However, it has been notoriously difficult to decipher how exactly information related to sexual signaling is encoded in complex chemical profiles. Similarly, our knowledge of the genetic basis of sexual signaling is very limited and usually restricted to a few case studies with comparably simple pheromonal communication mechanisms. The present study jointly addresses these two knowledge gaps by characterizing two fatty acid synthase genes that most likely evolved by tandem gene duplication and that simultaneously impact sexual attractiveness and complex chemical surface profiles in parasitic wasps. Gene knockdown in female wasps dramatically reduces their sexual attractiveness coinciding with a drastic decrease in male courtship and copulation behavior. Concordantly, we found a striking shift of methyl-branching patterns in the female surface pheromonal compounds, which we subsequently demonstrate to be the main cause for the greatly reduced male mating response. Intriguingly, this suggests a potential coding mechanism for sexual attractiveness mediated by specific methyl-branching patterns in complex cuticular hydrocarbon (CHC) profiles. So far, the genetic underpinnings of methyl-branched CHCs are not well understood despite their high potential for encoding information. Our study sheds light on how biologically relevant information can be encoded in complex chemical profiles and on the genetic basis of sexual attractiveness.


Attracting a mate is critical in all species that sexually reproduce. Most animals, particularly insects, do this using chemical compounds called pheromones which can be sensed by potential mates. But how these vast range of different compounds encode and convey the information needed to secure a partner is not fully understood, and the genes that drive this complex communication mechanism are largely unknown. To address this knowledge gap, Sun et al. studied the parasitic wasp Nasonia vitripennis. Like other insects, female N. vitripennis contain a wide range of chemical compounds on their cuticle, the outer waxy layer coating their surface. Sun et al. set out to find exactly which of these compounds, known as cuticular hydrocarbons, are involved in sexual communication. They did this by simultaneously inactivating two related genes that they hypothesized to be responsible for synthesizing and maintaining chemical compounds on the cuticle of insects. The genetic modification altered the pattern of chemicals on the surface of the female wasps by specifically up- and down-regulating compounds with similar branching structures. The mutant females were also much less sexually attractive to male wasps. These findings suggest that the chemical pattern identified by Sun et al. is responsible for communicating and maintaining sexual attractiveness in N. vitripennis female wasps. This is a significant stepping stone towards unravelling how sexual attractiveness can be encoded in complex mixtures of pheromones. The results also have important implications for agriculture, as this parasitic wasp species is routinely used to exterminate particular fly populations that cause agricultural damage. The work by Sun et al. provides new insights into how these wasps sexually communicate, which may help scientists improve their rearing conditions and sustain them over multiple generations. This could contribute to a wider application of this more sustainable, eco-friendly alternative to destructive agricultural pesticides.


Assuntos
Vespas , Vespas/química , Vespas/genética , Vespas/fisiologia , Animais , Ácido Graxo Sintases/genética , Preferência de Acasalamento Animal , Masculino , Feminino , Técnicas de Silenciamento de Genes , Atrativos Sexuais/análise , Alcanos/análise , Alcenos/análise
19.
Mar Pollut Bull ; 194(Pt B): 115262, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37467685

RESUMO

The variations in the levels of n-alkanes and Polycyclic Aromatic Hydrocarbons (PAHs) in the sediment of the Nile Delta coast and extended to Bardaweel Lagoon along the Mediterranean were investigated during September 2021. The total n-alkane concentrations in the sediment samples ranged from 18.85 to 164.37 µg/g with an average value of 51.98 ± 17.49 µg/g. Similarly, the ΣPAHs concentrations ranged between 4.55 and 207.48 ng/g with an average of 27.89 ± 49.82 ng/g. The carbon preference index (CPI) values were in the 0.21 to 1.39 range, indicating variations in the sources of n-alkane at the analyzed locations. The mean carbon number (MCN) values ranged from 7.41 to 15.47, with an average of 13.34 ± 1.69. The levels of both low and high molecular weight PAHs were lower than the median and low effective range values (ERM and ERL). The computed total TEQ value varied from 0.102 to 4.129 ng/g in the sediment samples under investigation.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental
20.
Sci Total Environ ; 895: 165065, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355134

RESUMO

Southern South America is the only large landmass that extends through the core of the Southern Westerly Winds (SWW), controlling hydrological and ecosystem variability in the region. In fact, the vegetation along the west coast changes from Temperate and Valdivian Rain Forest to the North Patagonian Evergreen Forest (ca. 42°S) due to the latitudinal influence of the SWW. Climate is an important driver of organic matter accumulation in lakes, hence changes in vegetation would be recorded in lacustrine sedimentary archives. This study evaluated leaf waxes contained in lake surface sediments as indicators of climate change along the west coast of southern South America, providing a biogeochemical dataset for ongoing and future (paleo)climate and environmental research. The fatty acid and n-alkane sediment leaf wax datasets are compared with latitudinal, orographic, and climatic (Mean Annual air Temperature [MAT] & Precipitation [MAP]) trends extracted from a monthly gridded reanalysis product of the Climate Forecast System Reanalysis. Fatty acids are more abundant than n-alkanes, with high abundances characterizing the transition between seasonal and year-round precipitation along the coast (ca. 42°S). The abundance of both leaf wax groups increases with MAP, suggesting precipitation as the main control on sedimentary leaf wax delivery to the lake sediments in the study area. The Carbon Preference Index (CPI) of the two groups show opposite trends, but both highlight the climate transition at ca. 42°S, and have a linear relationship with MAP. The opposite significant trends between n-alkane CPI and fatty acid CPI with MAP are interpreted as higher n-alkane production at much higher precipitation because leaf wax fatty acids are the precursors of n-alkanes. Hence, past periods during which these leaf waxes show opposite trends in CPI might be interpreted as a precipitation change, especially if additional information such as pollen, diatoms, chironomids and stable isotopes is available.


Assuntos
Alcanos , Lagos , Alcanos/análise , Ceras/química , Ecossistema , Folhas de Planta/química , Ácidos Graxos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...